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Abstract
The use of implanted muons to probe the dynamics of electronic excitations
in conducting polymers is reviewed. Early work on polyacetylene showed
evidence for mobile solitons performing one-dimensional diffusion in the trans
isomer and localized spins in the cis isomer. Subsequent muon studies on
a range of conducting polymers have shown evidence for mobile polaronic
excitations and microscopic transport properties for these polarons have been
derived from the measurements. A theoretical framework was developed by
Risch and Kehr to describe the intermittent hyperfine coupling between a static
muon and an electron diffusing randomly through a chain of sites. This theory
predicts a specific form for both the muon spin relaxation function and the
field dependence of the relaxation rate. The experimental data are found to be
described well by this model. Intrachain diffusion rates can be extracted from
the data; in several cases an interchain diffusion rate can also be measured. The
anisotropy of diffusion rates can be as high as 104 at low temperatures, reducing
typically to 102 or less at room temperature. The importance of molecular
vibrational modes in controlling the electronic motion in the polymer has been
shown.

The topic of conducting polymers has developed steadily from a field of novel physics and
chemistry into an important area of technology, involving the production of commercial
electronic and optoelectronic devices [1, 2]. The nature of the charge carriers and the
mechanisms of charge motion in such polymeric materials are fundamental to their operation.
Various types of measurement can be applied to determine carrier transport properties; one
class of techniques are spin dynamical probes, which focus on electronic excitations with
spin and measure the fluctuating magnetic field at a probe position due to the motion of
this spin. Spin dynamical techniques in the form of ESR and NMR investigations have
been used extensively to study carrier diffusion in anisotropic conductors and many studies
on doped conducting polymers have been reported (for a review of the application of spin
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dynamical techniques using magnetic resonance to conducting polymers, see [3]). Alongside
the conventional magnetic resonance techniques, µSR has also emerged as an alternative spin
dynamical probe which can be applied to such systems. In contrast to ESR and NMR, µSR
has the unique feature that, in many situations, it can both generate an excitation by chemical
reaction with the system and also act as a sensitive probe of the dynamics of this excitation.
This is particularly the case in conjugated polymer systems, where muonium forms readily and
rapidly reacts with the unsaturated bonds. A particular interest in these polymeric systems is
that, due to strong electron–lattice coupling, the mobile electronic excitations take the form of
solitons and polarons—properties of these excitations forming the basis for a range of molecular
electronic devices. µSR spin dynamics is a particularly powerful probe for conductors with
very low concentrations of carriers, due to the feature of self-generation of carriers by muon
implantation. This contrasts with the other probes of spin dynamics, which are more suited to
the highly doped metallic state.

Details of the µSR technique have been reviewed elsewhere (e.g. [4]) and some of the
earlier muon work on conducting polymers was covered in a previous review [5]. In this
paper we review the current status of experimental and theoretical studies of muon-detected
carrier motion in conducting polymers. The paper is organized in four parts. The first section
reviews the early development of the field, which focused on the prototypical conducting
polymer, polyacetylene, and on developing appropriate models to link the observed relaxation
with the microscopic diffusion parameters. The second part explores in more detail the most
well-developed relaxation model for a bound muon interacting with mobile carriers, the Risch–
Kehr model. The third part covers experimental studies on a range of conducting polymers,
which generally have non-degenerate bond-alternation ground states, supporting electronic
excitations in the form of polarons rather than solitons. The conclusion summarizes the
current experimental and theoretical status and highlights some possible directions for future
development in this field.

1. Polyacetylene and 1D diffusion models

The first muon relaxation experiments on the conducting polymers were carried out by
Nagamine and co-workers in the mid-1980s on the simplest conducting polymer,polyacetylene
(PA) [6–11] (see figure 1). Implanted muons were used to probe the properties of mobile spin
excitations in the trans isomer of PA. In these studies the longitudinal muon spin relaxation was
measured and the main source of muon relaxation was attributed to hyperfine coupling between
muons bonded to the polymer and mobile electronic excitations in the form of solitons [12],
which are able to move relatively freely along the polymer chain. The data were analysed using
an exponential relaxation function and an expression was used for the relaxation rate which
was originally derived for NMR in an anisotropic system with diffusive spin motion [13, 14].
The longitudinal relaxation rate λ may be written as [13]

λ(B) = ρ

20
[3D2 f (ωµ) + (5A2 + 7D2) f (ωe)] (1)

where ωµ = γµ B, ωe = γe B, ρ is the spin concentration, A and D are the scalar and dipolar
hyperfine coupling parameters and f (ω) is the spectral density of the spin correlation function,
which contains the information about the spin dynamics. For a purely one-dimensional
(1D) diffusion process, the correlation function for a particle revisiting the origin has a
t−1/2 behaviour, so the associated spectral density derived by Fourier transformation is
f (ω) ∝ ω−1/2, which implies that there should be a B−1/2 scaling in the relaxation rate;
this was indeed observed in the experiment (figure 2).
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Figure 1. (a) The two isomers of PA and (b) the unpaired electron state formed by addition
of muonium to the chain. (c) In the trans case, degeneracy of the possible bond-alternation
ground states leads to solitonic spin defects in the form of mobile bond-order domain walls [12].
Consequently the muon-generated spin defect can move freely away from the muon site as a neutral
soliton, In contrast, the cis isomer lacks the degenerate bond-alternation ground state of the trans
isomer and free solitons are not supported. In this case the spin defect can still move away in the
form of a negative polaron, leaving behind a positive charge near the muon site. Note that although
the spin is represented here as being localized at one site, the spin structure is actually spread out
over 20–30 sites.

Figure 2. The field dependence of the fitted exponential muon relaxation rate λ for trans-PA [7].
The very smallness of the isotope effect and the H −1/2 field dependence indicate that the muon spin
relaxation is dominated by coupling to mobile electronic spin excitations in the form of solitons.

In the cis isomer of PA, a completely different behaviour was seen; very small residual
asymmetry was measured at low fields with only very weak relaxation. A clear repolarization
effect was observed, where applying small longitudinal fields led to a recovery of asymmetry;
full asymmetry was regained for fields above 100 G. This behaviour was attributed to trapping
of the soliton at the muon site, due to the absence of degeneracy in the bond-alternation ground
state for this isomer. In the trapped state it is possible to make a spectroscopic measurement
of the hyperfine coupling between the spin defect and the muon. Values for A in the region
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of 91 MHz were obtained for several samples of cis-PA using high transverse field muon
spin rotation and level-crossing-resonance techniques [9]. When the spin is highly mobile,
however, such spectroscopic measurements become impossible, due to the large dynamical
broadening effects. In this situation direct relaxation measurements in the time domain become
the only viable experimental technique. On the theoretical side, the difference in the structure
and properties of the extended spin defect for the two isomers on addition of muonium was
calculated by Fisher et al [15] and shown to be consistent with the experiments.

The time evolution of the relaxation was observed in the experimental studies to be non-
exponential; this was originally interpreted in terms of interchain motion of solitons. However,
it is known that the correlation function for 1D diffusion is not an exponential and hence the
muon spin relaxation is not expected to be a simple exponential either. Risch and Kehr
(RK) [16] furthermore pointed out that since the correlation time for the return to the origin
of a particle diffusing in 1D is divergent, the standard NMR theory used for the earlier data
analysis is not strictly valid, as it assumes the existence of a finite correlation time that is
short compared to all other timescales in the problem. RK then applied a stochastic diffusion
theory to the model of a static muon interacting through an intermittent hyperfine coupling
with an electron that is randomly diffusing along a 1D chain. They derived the corresponding
non-exponential relaxation function and obtained an inverse field dependence for the relaxation
parameter �. This predicted relaxation behaviour has been found to describe the measurements
in conducting polymers rather well [16, 25]. The RK theory will be covered in more detail in
section 2.

Although it may be difficult to observe the interchain motion directly in the time domain
through its contribution to the muon relaxation function, interchain motion is expected to
provide a cut-off to the divergence of the measured relaxation rate as the probe frequency is
reduced by lowering the applied magnetic field. This interchain motion can be included in
the conventional relaxation rate theory by generalizing the motion to an anisotropic random
walk on a discrete lattice. Butler et al [14] showed that the correlation function describing the
probability of return to the origin for a particle performing a random walk on a discrete lattice,
with site-to-site hopping rates D1, D2 and D3 along the three axes of the lattice, is given by
the expression

φ(t) = e−2(D1+D2+D3)t I0(2D1t)I0(2D2t)I0(2D3t) (2)

where I0 is the modified Bessel function. The corresponding spectral density function is derived
from the Fourier transform of equation (2). For the quasi-1D case that we are particularly
interested in, D1 = D‖ is identified with the fast intrachain diffusion rate and D2 = D3 = D⊥,
the slower interchain diffusion rate. In the regime where ω � D‖, the spectral density function
is then given by [17, 18]

f (ω) = 1√
4D‖ D⊥

√
1 +

√
1 + (ω/2D⊥)2

1 + (ω/2D⊥)2
. (3)

The effect of the cut-off shown by equation (3) on the frequency dependence of the relaxation
rate is illustrated in figure 3. In the case of the RK model, which does not explicitly include
interchain processes, an empirical cut-off of the form � = �0/(1 + ω/D⊥) has been used in
analysing experimental data; this can be seen to provide a softer cut-off than equation (3).
If a low frequency cut-off can be observed in a measurement, then both D‖ and D⊥ can be
estimated from the field dependence of the relaxation rate. However, other effects can compete
to produce a low field cut-off, as will be seen in the following section, and care must be taken
in assigning the cut-off to an interchain diffusion process.
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Figure 3. The field dependence of the muon relaxation rate λ or �1/2 for 1D diffusion models,
along with the effect of introducing a cut-off reflecting interchain diffusion.

Figure 4. The RK model involves a muon bound to a single site in the chain with an electron
hopping freely along the chain with diffusion rate labelled D‖ (=γ/2). The electron interacts
with the muon via the hyperfine coupling ω0, but only when it occupies the site adjacent to the
muon. While it diffuses, the electron spin relaxes at the rate ν due to interaction with other spins
distributed throughout the system. The interchain hopping rate D⊥ is also included as an extension
to the original model.

2. The Risch–Kehr model

Although the RK model appears quite simple, with only three microscopic parameters, the
predicted muon relaxation behaviour is remarkably complex and it is useful to explore the
predicted behaviour in some detail, in order to help in identifying its experimental signature in
comparison with other possible models for the dynamical behaviour. The three parameters in
the RK model [16] (see figure 4) are the hyperfine coupling (ω0 = 2π A, assumed isotropic),
the electron spin relaxation rate (ν, resulting from interaction with spin defects or excitations
of the lattice) and the on-chain site-to-site hopping rate D‖. The RK formulae are expressed in
terms of the total hop rate parameter γ ,which is twice D‖ (note that this hop rate γ should not be
confused with the gyromagnetic ratios γµ and γe). The on-chain diffusion constant is related to
the diffusion rate by D‖ = D‖a2, where a is the site separation. The muon relaxation function
is then determined by these three parameters plus the time dependent probability function for
the electron’s return to the origin F(t). F(t) contains all the information about the mechanisms
and dimensionality of the diffusion and could in principle include such additional factors as
interchain hopping, reflection at chain ends and trapping sites or the presence of an initial
activation barrier at the muon site. In the systems with highly mobile spin excitations, the
magnitude of the three parameters will typically follow the order γ > ω0 > ν.
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RK gave full expressions for the polarization behaviour in the Laplace domain (see
equations (40)–(43) in [16]). Although these expressions are rather complex, numerical
inversion to give the time evolution of the muon polarization can be performed and we have
used the algorithm of D’Amore et al [24] to perform this inversion and evaluate the form of
the muon spin relaxation function in different situations. Asymptotic expansions were also
given by RK for several parameter regimes.

In the rest of this section we survey the main results of the RK model, before looking in
section 3 at applications of the muon technique to conducting polymer systems other than PA.

2.1. The fixed electron model

It is useful to make a comparison with the relaxation behaviour expected for a fixed electron
in a bound muonium state, before looking in detail at the effects of electron motion on the
muon spin relaxation. In this case there is no diffusion of the spin, but the electron is subject
to spin relaxation by interaction with an external thermal reservoir. The Wangsness–Bloch
dynamical model [19] can be used to calculate the relaxation behaviour and its magnetic
field dependence. This involves solving the equation of motion for the density matrix of the
hyperfine-coupled muon–electron system. Fifteen coupled equations are obtained, describing
the three components of muon polarization, three of electron polarization and the nine mixed
polarization components [20–22]. The electron relaxation rate is introduced as a constant
term −ν, which is added to those diagonal elements of the dynamical matrix that describe the
electron or mixed polarization. In principle, the resulting relaxation function for the muon spin
could be quite complex, containing a large number of precessing and exponentially relaxing
components, particularly when anisotropy of the hyperfine interaction is taken into account.
However, we have found that in practice, for most reasonable parameter values, the non-
oscillatory part of the muon relaxation is dominated by a single-exponential decay. In this
situation a conventional exponential muon spin relaxation function

Gz(t) = e−λt (4)

is expected to be observed and figure 5 shows the corresponding field dependence expected
for the relaxation rate λ in this case. Parameter values are taken to be those typical for a
paramagnetic muon state in a conjugated polymer. The relaxation rate is described by the
expression

λ = ν

1 + ( ωe
ω0

)2
(5)

in which the muon closely follows the electronic relaxation at low fields but becomes
progressively decoupled at higher fields with a corresponding reduction in the muon spin
relaxation rate.

2.2. Field dependence of the relaxation

In the RK model the general form of the muon spin relaxation function, away from the earliest
times, takes the form

Gz(t) = e�t erfc
√

�t (6)

where erfc represents the complementary error function. Equation (6) shows t−1/2 behaviour at
long times, following the behaviour of the 1D correlation function. In terms of the microscopic
parameters of the model, the relaxation rate parameter is given by

� = ν(
1 + γ

√
2ωeν

ω2
0

)2 . (7)
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Figure 5. The field dependence of the exponential muon
relaxation rate λ for a static electron with spin flip rate
ν = 106 s−1 and hyperfine coupling A = 100 MHz.

Figure 6. Field dependence of the RK relaxation rate �

in the quasistatic limit of slow electron diffusion where
γ < ω0. A sharp cut-off takes place when ωe becomes
greater than ω0.

When the field is high enough for the second term in the denominator of equation (7) to
dominate, this becomes independent of ν:

� = ω4
0

2ωeγ 2
, (8)

exhibiting the characteristic B−1 behaviour for �.
The purely static regime where γ = 0 was discussed in section 2.1. If γ is finite but

slow compared to ω0, then the relaxation behaviour can be regarded as quasistatic, with a
similar high field cut-off behaviour to the static case (figure 6). In this regime the relaxation
rate remains constant up to the cut-off field, at which γ = ωe, followed by a steep B−4 fall-
off at high fields. Note that for the low relaxation rates expected at high fields, it may be
difficult to distinguish the RK relaxation function of equation (6) from the simple exponential
of equation (4) over the timescale of a typical µSR measurement. The behaviour shown in
figure 6 is then equivalent to that of figure 5, apart from the factor of two in the power law,
due to the different scaling properties of the two relaxation functions when the relaxation rate
is small.

When the diffusion rate is significantly larger than the hyperfine frequency, an appreciable
regime appears in which � follows B−1 according to equation (8) (figure 7). If such a regime
can be observed, then equation (8) can be used to estimate the diffusion rate from the measured
�, as was done in previous studies (e.g. [25, 26]). However, some independent knowledge of
ω0 is required to get an accurate measurement of γ . In principle this can be obtained from
the decoupling behaviour, but the usual static decoupling theory will not strictly be applicable
here and the dynamics needs to be taken fully into account when estimating ω0 from the
repolarization curve. We will return to this point later.

A high field cut-off will also eventually be seen in the fast diffusion case as ωe approaches
and exceeds γ (figure 7); the power law in the high field regime is again B−4. Note that
in contrast to the static and quasistatic cases, in this parameter regime there is no particular
crossover feature around ωe/ω0 = 1, which appears here in the middle of the 1D region.
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Figure 7. The field dependence of the RK relaxation rate
in the fast diffusion limit (γ > ω0), where a broad region
of 1D behaviour is apparent. A high field cut-off is seen
when ωe > γ and at high fields � follows a B−4 law.

Figure 8. The field dependence of the RK relaxation rate
in the fast diffusion limit where 1D inverse field relaxation
behaviour is apparent at high fields, with and without an
additional low field cut-off at 50 G.

The overall picture that one obtains for the high field cut-off is that it is determined by
the probe frequency becoming faster than the fastest characteristic frequency of the system;
in the static and quasistatic cases this frequency is the hyperfine frequency ω0, whereas in
the presence of fast diffusion it is the hop rate γ . Above the cut-off field the relaxation rates
become significantly reduced and, due to the dominance of the square root in equation (6)
at low �t , the B−4 behaviour for the RK relaxation scales closely with the B−2 behaviour
expected from a standard Lorentzian spectral density function.

It should be noted that while the spin is diffusing, the presence of a finite value of ν, that is
significantly smaller than both ω0 and γ , is essential for the muon to see the characteristic field
dependence of the low dimensional motion. This was demonstrated in a computer simulation
reported by Jestädt et al [23], who studied a 1D diffusion model in which the electron spin
polarization is lost completely every time the electron leaves the muon site, regardless of
the time elapsed between return visits. This corresponds to the fast electron relaxation limit
ν > γ,ω0. Although the RK relaxation function, equation (6), was clearly observed in the
simulation in the time domain, the field dependence of the relaxation rate simply showed a
high field cut-off and did not have any extended region with � ∝ B−1 or λ ∝ B−1/2.

2.3. The low field cut-off

On the low field side there is an intrinsic cut-off to the B−1 behaviour, as reflected in
equation (7), once � approaches the electron spin relaxation rate ν, as the muon cannot relax
faster than the electron in this model. If ν is sufficiently fast, then the low field cut-off may be
defined by features of the diffusion topology, as discussed earlier, rather than by ν. Information
about the interchain diffusion rate may then be inferred from such a cut-off (figure 8). Note
that this implies that for studying transport related cut-off phenomena, ν should be as large as
possible, while still being small compared to ω2

0/γ , in order to observe relatively slow cut-off
frequencies related to interchain motion.
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2.4. The low field relaxation function

The low field relaxation can be quite different from the higher field behaviour. In zero field
and for slow ν the relaxation takes an exponential form at early times [16], following

Gz(t) = (1 + e−ω0
2t/γ )/2, (9)

which shows a polarization plateau at 0.5, reflecting the expected residual polarization for free
muonium. Allowing for electron relaxation, the plateau relaxes and on increasing to moderate
fields (figure 9) the relaxation takes the form of the RK function at longer times (equation (6)),
with the value of � given by

� = ν

(1 + (γ ν/ω2
0))

2
. (10)

If ω0 is relatively large and γ relatively small, then the initial exponential relaxation may be
too fast to measure and will appear as a lost asymmetry fraction, which may be recovered
by applying a magnetic field. Numerical calculations are however necessary to adequately
describe the transition from this very low field regime to the higher field regime and test
its dependence on ω0 and the other parameters involved. RK gave an exact expression in
Laplace space for zero field (RK equations (44), (45)), which can be inverted numerically to
demonstrate the dependence of the zero-field relaxation on the diffusion rate (figure 10).

2.5. Repolarization and relaxation

The absolute accuracy of γ estimated from a measurement of � depends on accurate knowledge
of ω0, which may be difficult to obtain in practice. In the static case, a reasonable estimate of ω0

may be determined from the mid-point of the repolarization. In the presence of fast dynamics
the determination of ω0 is not so straightforward. However, by studying together both the
repolarization of asymmetry at fixed time and the field dependent relaxation rate, it should
be possible to derive values for the two parameters γ and ω0 self-consistently. If a time is
chosen where the relaxation follows the RK function, then the Laplace domain expressions (RK
equations (54), (55)) can be inverted and used for fitting the data. The repolarization behaviour
expected for different diffusion rates is shown in figure 11 together with the corresponding
field dependences for the relaxation rate.
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Figure 10. The zero-field muon spin relaxation function as the electron diffusion rate varies, with
linear time and log time plots shown for the same numerical data.
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Figure 11. The muon spin repolarization curves (left-hand side) and RK relaxation rate � (right-
hand side) as the electronic diffusion rate increases with fixed ν and ω0. B0 is the mid-point of the
static repolarization determined by ω0.

For the lowest values of γ shown, the repolarization is quite similar to the standard
static case. Moderate 1D diffusion rates shift the centre of the repolarization (defined as the
75% polarization point) to higher fields and broaden the repolarization compared to the static
case. At higher diffusion rates the broadening becomes more extreme and the centre of the
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repolarization feature goes through a maximum and then moves rapidly to lower fields and
disappears completely, as the muon and electron become strongly decoupled at the fastest
diffusion rates and the polarization remains high at all fields. The presence of a broad
repolarization curve combined with an extended region where � ∝ B−1 may be taken as
a characteristic feature of this type of coupled muon–electron dynamics which is governed by
fast 1D diffusion of the electron.

3. Application to various conducting polymers

Since trans-PA is rather unique in having a degenerate bond-alternation ground state that
supports free neutral solitons, it was not initially clear whether the muon technique would
be of use in the more usual non-degenerate systems, where bond-alternation solitons are not
free to move. Indeed, as discussed in section 1, the data for the non-degenerate cis form of
PA showed a bound spin defect associated with the muon, with very little relaxation. In the
majority of conducting polymers, which cannot support free solitons because of their non-
degenerate ground states, the simplest mobile carriers are charged polarons. These polarons
should also move according to the anisotropic diffusion models that have been considered
earlier. In the case of a muon-generated carrier, a negative polaron is formed, which will
leave a positive charge if it diffuses away from the muon site (figure 1). Hence there is an
energy of binding to the muon site which may lead to localization of the polaron. The site
of muonium addition could be regarded as a semiconductor donor state requiring ionization
to produce a mobile polaronic charge carrier. In general, conducting polymers are found
experimentally to have a muon spin relaxation behaviour that has features in common with
both trans-PA and cis-PA, i.e. a significant field dependent relaxation is seen together with
a repolarizing component of asymmetry. This suggests the presence of both localized and
mobile spins within the same sample. If this is the case then the tendency to localization near
the muon must be dependent on the local environment. Various factors may determine the
degree of localization. The extended nature of the wavefunction of the polaron and the high
polarizability of the conjugated electron system would both tend to reduce the electrostatic
binding potential. There will also be changes in the local electronic structure when the muon
is bonded to the chain. All these factors would need to be taken into account to determine
whether the polaron is bound in a particular configuration in a specific system. Even in the
case where the muon-generated polaron is strongly bound to the muon site, it can provide a
sensitive probe for the motion of the small concentration of other polarons generally present in
these organic semiconductors (further polarons may also be generated by radiolytic processes
associated with the muon implantation). These polarons may be free to move and interact with
the bound polaron and its closely coupled muon via a spin exchange mechanism.

Another possibility to consider is whether the muonium is completely thermalized when
it reacts with the chain; any excess energy brought into the reaction could be carried away by
a polaron, which would only become trapped once it had completely thermalized and diffused
back to the muon site. Since this return process would be governed by anisotropic diffusion,
one might expect in this case to see a characteristic field dependence very similar to that of the
continuous diffusion model. Other types of ‘hot’ process including bond rupture may also be
possible during the implantation stage as the muon slows down towards its final state. These
processes are mostly expected to take place a considerable distance away from the bonding
site of the muonium. In determining the significance of such processes for the muon studies
one should consider the muon spin relaxation associated with such states. The situation where
such a process might have the greatest effect on the observed muon spin relaxation is where
the muonium energy at the end of its track is just enough to break the chain and simultaneously
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Figure 12. The structures of the polymers, in addition to polyacetylene, for which muon studies
have been reported. From top to bottom these are polypyrrole (PPY), polyaniline:emeraldine base
(PANI:EB), polyaniline:pernigraniline base (PPG), polypyridine (PPD) and polyphenylenevinylene
(PPV).

bond to one side of the rupture. The unpaired spin in this case would however be on the
opposite segment to that containing the muon and the hyperfine coupling would be very weak
compared to the standard picture of a polaron produced on the same chain as the muon.

In the rest of this section we will review the experimental results that have been obtained
for various conducting polymers using muons. Molecular structures for these polymers are
shown in figure 12.

3.1. Polypyrrole

Polypyrrole (PPY) was the second conducting polymer system to be studied by means of
muons, following the original pioneering work on PA by the Tokyo group. In undoped PPY,
the polarons were observed to be strongly localized at 15 K, showing similar behaviour to
that seen in cis-PA, with very little relaxation [27]. At 300 K, however, a much stronger
relaxation appeared and the field dependence of the relaxation rate was found to be well fitted
by a two-dimensional (2D) diffusion model for the polarons.

Studies of PPY doped into the metallic state were also made [28, 27, 30]. In the doped
polymers full diamagnetic asymmetry was seen. As in normal metals, paramagnetic muon
states are not stable here. The electronic contribution to the relaxation was found to be much
weaker compared to the undoped case. This reflects the lack of the large contact hyperfine
coupling that would be associated with a chemically bonded muon state. Consequently the
electronic relaxation competes with relaxation due to dipolar fields from nuclear spins. The
lack of a chemical bond between the muon and the polymer also allows the muon to diffuse
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Figure 13. (a) Muon spin relaxation in PANI:EB at 6 K; the solid curves are RK relaxation fits.
(b) Comparison of RK and exponential relaxation fits [25].

at high temperatures, which further complicates the data analysis. Provided that the electron
motion is faster than the muon motion, however, information about the electronic diffusion
may still be obtained. The temperature dependence of the electronic relaxation rate in toluene
sulfonate-doped PPY indicated that the carrier diffusion rate decreases significantly with
decreasing temperature [28],consistent with the changes observed in macroscopic conductivity
measurements. Differences in the low temperature spin dynamics were seen between materials
doped with PF6 and with toluene sulfonate ions [30], which were also found to be correlated
with macroscopic transport measurements.

3.2. Polyaniline

Two non-metallic forms of polyaniline (PANI), emeraldine base (EB) and polypernigraniline
base (PPG) were studied and found to show B−1/2 behaviour in the relaxation rates derived
from fitting to exponential relaxation functions at low temperatures; this is consistent with
1D carrier motion [27]. PPG is of particular interest, as it is one other example, besides
trans-PA, of a system with a degenerate ground state which can support free solitons. In the
case of PANI:EB an interchain cut-off could be observed in the field dependence at higher
temperatures. In subsequent studies the RK relaxation function (equation (6)) was shown to
provide a better fit of the relaxation data (see figure 13). The relaxation rate � was observed to
show B−1 scaling over a wide range of fields (figure 14) and using the RK model with low field
cut-off, with ω0 being estimated from the repolarizing asymmetry (figure 13), the intrachain and
interchain diffusion rates could be extracted over a range of temperatures (figure 15) [25, 31].
The temperature dependence of the interchain diffusion rate was found to be similar to that seen
in ESR studies of doped material [18], indicating relatively slow thermally activated transport.
In contrast, the fast intrachain motion was found to be less temperature dependent, showing a
phonon-limited dependence, characteristic of metal-like transport. Interaction of the polarons
with thermally activated ring libration modes was found to give a good description of the
temperature dependent data (figure 15).

The metallic state of polyaniline, emeraldine salt (PANI:ES), has also been studied
[32, 29, 30]. The electronic contribution to the relaxation was found to be best described
by a 2D diffusion model, as was found to be the case for doped polypyrrole. The measured
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temperature dependence implied that intrachain diffusion rate increases with temperature in
the metallic state, in contrast to the undoped case, but in agreement with the results from
ESR studies of PANI:ES [18]. This presumably reflects the tendency to localization at low
temperatures produced by the dopant ion potential, which is not present in the undoped case.

3.3. Polypyridine

Polypyridine (PPD) is a conducting polymer which is particularly efficient at transporting
negatively charged carriers and hence is useful for organic light-emitting-diode
applications [33]. Muon spin relaxation studies have been used to study the motion of negative
polarons in PPD [31]. The low temperature intrachain diffusion rate was found to be similar to
that of PANI:EB (see figure 16), being independent of temperature below 100 K. The diffusion
rate maintains a high value over a wide range of temperature and then falls off above 200 K.
This can be compared with the PANI case where the onset of the fall is around 50 K. The
high temperature behaviour here is controlled by scattering from a lattice mode with an energy
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around 90 meV, compared to a 12 meV mode in the PANI case. This difference reflects the
rather different structures of the two polymers (see figure 12); whereas the rings in PANI are
free to rotate about flexible links through the nitrogens, the structure of PPD is much more rigid,
with direct linkage of the rings through single bonds. The rings can therefore maintain good
alignment over a greater range of temperature, which is beneficial for the transport properties.

3.4. Polyphenylenevinylene

Polyphenylenevinylene (PPV) is a polymer system that has been found to be well suited
to the fabrication of electroluminescent display devices and understanding the physics of
carrier motion in these materials is of great technological interest. The properties of PPV
can by tailored by adding long side chains to increase chain separation and improve the
fluorescence and electroluminescence quantum yields. This would also be expected to modify
the microscopic carrier diffusion rates and the muon spin relaxation technique has recently
been applied to study these effects [26]. Polaron diffusion properties were measured for PPVs
with two different types of side chain (figure 17). As one might expect, the effect on the
intrachain motion of modifying the side chain is not so great. On the other hand, the interchain
motion was found to be drastically modified at low temperature (figure 18) with the temperature
dependence being described over the range of measurement by a simple thermal activation law
where the activation energy differs by a factor of six between the two polymers.

3.5. Biopolymers

Biopolymers are not usually regarded as conducting polymer systems. However, long range
motion of charge along the polymeric chain has been indicated by various optical experiments
on proteins [36] and on DNA [37]. This is an interesting, although still somewhat controversial
area, where muon studies can potentially make a contribution. Recent muon studies on the
electron transferring protein cytochrome-c [38] and on DNA [39] have explored the possibility
of applying to biopolymers the anisotropic carrier diffusion theory that was developed for
the conducting polymers. Using this approach, diffusion parameters can be extracted and
studied as a function of temperature. The biopolymers are however considerably more
complex structurally than the conducting polymers and interpreting the parameters in terms
of microscopic dynamical processes is a challenging task. Some parallel theoretical work
can therefore be particularly helpful here. In the case of proteins, computational studies of
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Figure 17. Comparison between the temperature
dependent intrachain diffusion rates for two different PPV
polymers [35].

Figure 18. Comparison between the temperature
dependent interchain diffusion rates for two different
PPV polymers [35].

the muon states in some of the constituent amino acids have been reported [40]. For DNA
a theoretical study of muonium adducts of the isolated nucleic acid bases was reported [41],
which corresponds well to experiments on these molecules [42]. Such studies are expected to
provide useful information for interpreting muon investigations on the full DNA molecule.

4. Conclusion

From the work summarized here it is clear that muons can see evidence for mobile spins in a
wide variety of conducting polymers. The initial expectation, that the highly localized muon-
generated spins seen in cis-PA would be a general characteristic of non-degenerate conjugated
polymers, turned out not to be the case. One reason for this may be that cis-PA is particularly
susceptible to structural distortion when the muonium is added, e.g. a local isomerization to
trans-PA around the muon site might occur, leading to strong localization of the spin. In
contrast, in the case of polymers containing rings, the structures will have an extra stability
provided by the ring geometry and such an extreme conformational change would not be
possible.

The muon studies complement well the other spin dynamical probe techniques, being
particularly well suited to studies of the undoped state. There is also a contrast between the
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negative polarons generated by the muon and the positive polarons usually produced by doping
and studied by the NMR and ESR methods. Knowledge of the properties of both polarities
of polaron is important for polymer device physics, e.g. in electroluminescent devices the
balanced injection and recombination of both signs of carrier is required.

Studies of the temperature dependent diffusion rates have revealed the intimate relation
between the structural dynamics of the polymer and the motion of the carriers. This reflects
the very strong electron–lattice coupling that is a feature of conjugated polymers. Although
the temperature dependence of the on-chain diffusion rate can be studied easily with the muon
technique, the absolute accuracy of the determination of the on-chain diffusion rate depends
on accurate knowledge of the hyperfine coupling, which is not easy to obtain in a highly
dynamical regime. We have suggested how an approach combining measurement of both the
relaxation rate and the repolarization at a fixed time may be able to simultaneously extract the
interdependent hyperfine coupling and diffusion rate parameters.

Another muon technique that can be applied to conducting polymers involves applying
electric fields alongside the muon implantation. This technique has found application in
muon studies of semiconductors (e.g. [43]). The emerging results on electric field effects in
conducting polymers suggest that this technique may be useful in obtaining further information
about the muon probe states and the carrier transport mechanisms [44].

While experimental data have been accumulating steadily, there are still many gaps on the
theory side. For example, very little has been done to evaluate the changes in local electronic
structure produced by the addition of the muon. The interpretation of the observed repolarizing
asymmetry as being due to a fraction of localized states is also not entirely certain; attempts
to observe these localized spin states spectroscopically have not been successful. The RK
model contains a fast relaxation component that is rapidly decoupled by field to produce a
repolarization effect extending to early times, so it may be that the experimentally observed
repolarization is actually an intrinsic feature of the relaxation function, rather than the result
of heterogeneity in the sample. While the RK model has turned out to provide a good basic
framework for interpreting the experimental data, it does not include various effects that are
expected to occur in real systems, such as interchain hopping, finite chain length and the
presence of trap sites. Since the exact analytical solution of the basic intermittent hyperfine
coupling model of RK produces a somewhat unwieldy expression in the Laplace domain,
further work using numerical simulation in the time domain may be a better way to understand
the effect of incorporating these various extensions to the model.
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